Volume regulation mechanisms in Rana castebeiana cardiac tissue under hyperosmotic stress.
نویسندگان
چکیده
Volume changes of cardiac tissue under hyperosmotic stress in Rana catesbeiana were characterized by the identification of the osmolytes involved and the possible regulatory processes activated by both abrupt and gradual changes in media osmolality (from 220 to 280mosmol/kg H(2)O). Slices of R. catesbeiana cardiac tissue were subjected to hyperosmotic shock, and total tissue Na(+), K(+), Cl(-) and ninhydrin-positive substances were measured. Volume changes were also induced in the presence of transport inhibitors to identify osmolyte pathways. The results show a maximum volume loss to 90.86+/-0.73% of the original volume (measured as 9% decrease in wet weight) during abrupt hyperosmotic shock. However, during a gradual osmotic challenge the volume was never significantly different from that of the control. During both types of hyperosmotic shock, we observed an increase in Na(+) but no significant change in Cl(-) contents. Additionally, we found no change in ninhydrin-positive substances during any osmotic challenge. Pharmacological analyses suggest the involvement of the Na(+)/H(+) exchanger, and perhaps the HCO(3)(-)/Cl(-) exchanger. There is indirect evidence for decrease in Na(+)/K(+)-ATPase activity. The Na(+) fluxes seem to result from Mg(2+) signaling, as saline rich in Mg(2+) enhances the regulatory volume increase, followed by a higher intracellular Na(+) content. The volume maintenance mechanisms activated during the gradual osmotic change are similar to that activated by abrupt osmotic shock.
منابع مشابه
Caenorhabditis elegans OSR-1 regulates behavioral and physiological responses to hyperosmotic environments.
The molecular mechanisms that enable multicellular organisms to sense and modulate their responses to hyperosmotic environments are poorly understood. Here, we employ Caenorhabditis elegans to characterize the response of a multicellular organism to osmotic stress and establish a genetic screen to isolate mutants that are osmotic stress resistant (OSR). In this study, we describe the cloning of...
متن کاملDecrease in hyperosmotic stress–induced corneal epithelial cell apoptosis by L-carnitine
PURPOSE To characterize the osmoprotective properties of L-carnitine on human corneal epithelial cell volume and apoptosis during hyperosmotic stress. METHODS Human corneal limbal epithelial (HCLE) cells were exposed to culture medium at 300 mOsm (isotonic) or 500 mOsm (hyperosmotic) with or without L-carnitine (10 mM). Induction of apoptosis was detected by quantifying the proteolytic activi...
متن کاملEffects of P-glycoprotein on cell volume regulation in mouse proximal tubule.
The role of P-glycoprotein (P-gp) in cell volume regulation was examined in isolated nonperfused proximal tubule S2 segments from wild-type (WT) mice and those in which both mdr1a and mdr1b genes were knocked out (KO). When the osmolality of the bathing solution was rapidly decreased from 300 to 180 mosmol/kgH(2)O, the tubules from both the WT and KO mice exhibited regulatory volume decrease (R...
متن کاملHyperosmolar mannitol simulates expression of aquaporins 4 and 9 through a p38 mitogen-activated protein kinase-dependent pathway in rat astrocytes.
The membrane pore proteins, aquaporins (AQPs), facilitate the osmotically driven passage of water and, in some instances, small solutes. Under hyperosmotic conditions, the expression of some AQPs changes, and some studies have shown that the expression of AQP1 and AQP5 is regulated by MAPKs. However, the mechanisms regulating the expression of AQP4 and AQP9 induced by hyperosmotic stress are po...
متن کاملThe highly conserved protein methyltransferase, Skb1, is a mediator of hyperosmotic stress response in the fission yeast Schizosaccharomyces pombe.
The p21-activated kinase, Shk1, is required for cell viability, establishment and maintenance of cell polarity, and proper mating response in the fission yeast, Schizosaccharomyces pombe. Previous genetic studies suggested that a presumptive protein methyltransferase, Skb1, functions as a positive modulator of Shk1. However, unlike Shk1, Skb1 is not required for viability or mating of S. pombe ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Zoology
دوره 111 4 شماره
صفحات -
تاریخ انتشار 2008